Accuracy Assessment of Polarimetric SAR Land Cover Classification Using Topographic Compensation

Don Atwood, Benedikt Ripka
Alaska Satellite Facility
Project Overview

- Investigate potential of polarimetry for land cover classification
 - Focus on species differentiation
- Address the impact of topography on classification results
- Terrain-correct all polarimetric products to facilitate comparison with ground truth
 - Demonstrate synergy of PolSARpro and MapReady Tools
- Compare results with “ground truth” and evaluate classification accuracy
- Quantify the optimal classification approach for Interior Alaska
Species Differentiation

Spruce and Birch

Summer

Winter
Study Area

Boreal environment of Interior Alaska

- Characterized by:
 - rivers
 - wetlands
 - herbaceous tundra
 - black spruce forests (north facing)
 - birch forests (south facing)
 - low intensity urban areas
Study Area Classes

NLCD 2001 Land Cover Classification Legend

- 11 Open Water
- 21 Developed, Open Space
- 22 Developed, Low Intensity
- 23 Developed, Medium Intensity
- 24 Developed, High Intensity
- 31 Barren Land
- 41 Deciduous Forest
- 42 Evergreen Forest
- 43 Mixed Forest
- 90 Woody Wetlands
Study Area
Classes
Study Area Classes

NLCD 2001 Land Cover Classification Legend

- 11 Open Water
- 22 Developed, Low Intensity
- 41 Deciduous Forest
- 42 Evergreen Forest
- 90 Woody Wetlands
Classification Process
Traditional H/A/alpha

ALOS Quad-Pol data

PolSARpro
- Extract Coherency Matrix
- Lee Sigma Filter
- Compute H / A / alpha
- Wishart Segmentation

MapReady
- Terrain Correct
- Project to UTM
- Generate GeoTIFF

Wishart H/A/alpha Terrain-Corrected GeoTIFF

SLC
Classification Result
Traditional H/A/alpha

PolSARpro Classification

USGS Classes
Accuracy Assessment without corrections

<table>
<thead>
<tr>
<th>PolSARpro</th>
<th>USGS</th>
<th>Open Water</th>
<th>Urban</th>
<th>Deciduous</th>
<th>Evergreen</th>
<th>Woody Wetlands</th>
<th>TOTALS</th>
<th>USER'S ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Water</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>0%</td>
</tr>
<tr>
<td>Urban</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>100%</td>
</tr>
<tr>
<td>Deciduous</td>
<td>17</td>
<td>22</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>43</td>
<td>49%</td>
</tr>
<tr>
<td>Evergreen</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>25</td>
<td>5</td>
<td></td>
<td>43</td>
<td>58%</td>
</tr>
<tr>
<td>Woody Wetlands</td>
<td>32</td>
<td>2</td>
<td>3</td>
<td>27</td>
<td></td>
<td></td>
<td>64</td>
<td>42%</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCER'S ACCURACY</td>
<td>0%</td>
<td>30%</td>
<td>67%</td>
<td>76%</td>
<td>82%</td>
<td>51%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Topographic Impact on Classification

PolSARpro Classification

Simulated SAR
Coherency Matrix

\[S = \begin{pmatrix} S_{XX} & S_{XY} \\ S_{YY} & S_{YY} \end{pmatrix} \]

Scattering Matrix

\[T_{11} : \text{“Single Bounce”} \quad T_{22} : \text{“Double Bounce”} \quad T_{33} : \text{“Volume Scattering”} \]
Topographic Correction Methods

- Radiometric Terrain Correction:

\[
T_3 = \begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}
\]

\[
\text{correction factor from a DEM}
\]

\[
T_3 = \begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}
\]

- Span Normalization:

\[
T_3 = \begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}
\]

\[
\text{Span-normalized Coherency Matrix}
\]

\[
T_3 = \begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}
\]

\[
\text{Span}(T_3) = T_{11} + T_{22} + T_{33}
\]
Impact of Topography

T_{11} T_{22} T_{33}

No Corrections
Impact of Topography

<table>
<thead>
<tr>
<th>No Corrections</th>
<th>Radiometric Terrain Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{11}</td>
<td></td>
</tr>
<tr>
<td>T_{22}</td>
<td></td>
</tr>
<tr>
<td>T_{33}</td>
<td></td>
</tr>
</tbody>
</table>
Impact of Topography

T_{11} T_{22} T_{33}

<table>
<thead>
<tr>
<th>No Corrections</th>
<th>Radiometric Terrain Correction</th>
<th>Span Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3rd ALOS Joint PI Symposium, 9-13 Nov. 2009 Don Atwood
Classification Process
Radiometric Terrain Correction

ALOS Quad-Pol data → PolSARpro
- Extract Coherency Matrix

MapReady
- Radiometry Correction
- Terrain Correct
- Project to UTM

Terrain-Corrected, Projected T3

PolSARpro
- Lee Filter
- Compute H / A/ alpha
- Wishart Segmentation
 - H /A/ alpha

Wishart H/A/alpha Terrain-Corrected GeoTIFF

MapReady
- Generate GeoTIFF

Pol Classes
Classification Result
Radiometric Terrain Correction

PolSARpro Classification

USGS Classes
Accuracy Assessment for Rad-TC H/A/alpha

<table>
<thead>
<tr>
<th>PolSARpro</th>
<th>USGS</th>
<th>Open Water</th>
<th>Urban</th>
<th>Deciduous</th>
<th>Evergreen</th>
<th>Woody Wetlands</th>
<th>TOTALS</th>
<th>USER’S ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Deciduous</td>
<td>1</td>
<td>7</td>
<td>28</td>
<td>4</td>
<td></td>
<td>40</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>Evergreen</td>
<td>3</td>
<td>5</td>
<td>22</td>
<td>3</td>
<td></td>
<td>33</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>Woody Wetlands</td>
<td>32</td>
<td>2</td>
<td>7</td>
<td>30</td>
<td></td>
<td>71</td>
<td>42%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTALS</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>PRODUCER'S ACCURACY</td>
<td>0%</td>
<td>64%</td>
<td>85%</td>
<td>67%</td>
<td>91%</td>
<td>61%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Classification Process
Span-Normalized

ALOS Quad-Pol data

PolSARpro
• Extract Coherency Matrix
• Lee Sigma Filter
• Span Normalization (manual)
• Compute H / A / alpha
• Wishart Segmentation
 • H / A / alpha

MapReady
• Terrain Correct
• Project to UTM
• Generate GeoTIFF

SLC
Pol Classes

Wishart H/A/alpha Terrain-Corrected GeoTIFF
Classification Result
Span Normalized

PolSARpro Classification

USGS Classes
Accuracy Assessment for Span-Normalized H/A/alpha

<table>
<thead>
<tr>
<th></th>
<th>Open Water</th>
<th>Urban</th>
<th>Deciduous</th>
<th>Evergreen</th>
<th>Woody Wetlands</th>
<th>TOTALS</th>
<th>USER'S ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PolSARpro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Water</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>28</td>
<td>93%</td>
</tr>
<tr>
<td>Urban</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>100%</td>
</tr>
<tr>
<td>Deciduous</td>
<td>6</td>
<td>26</td>
<td></td>
<td>3</td>
<td>35</td>
<td>35</td>
<td>74%</td>
</tr>
<tr>
<td>Evergreen</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>28</td>
<td>6</td>
<td>42</td>
<td>67%</td>
</tr>
<tr>
<td>Woody Wetlands</td>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
<td>25</td>
<td>33</td>
<td>76%</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCER'S ACCURACY: 79% 45% 79% 85% 76% 73%
Summary of Accuracy Assessments

User and Overall Accuracies

<table>
<thead>
<tr>
<th>Land Cover Class</th>
<th>Lee-Filtered Only</th>
<th>Radiometric Terrain-Corrected</th>
<th>Span Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Water</td>
<td>0%</td>
<td>0%</td>
<td>93%</td>
</tr>
<tr>
<td>Urban</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Deciduous</td>
<td>49%</td>
<td>70%</td>
<td>74%</td>
</tr>
<tr>
<td>Evergreen</td>
<td>58%</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>Woody Wetlands</td>
<td>42%</td>
<td>42%</td>
<td>76%</td>
</tr>
<tr>
<td>Overall Accuracy</td>
<td>51%</td>
<td>61%</td>
<td>73%</td>
</tr>
</tbody>
</table>
Conclusions

• Polarimetric SAR Classification is difficult!
 • Data fusion provides greatest hope for success

• Radiometric variability caused by topography dominates classification

• Topographic compensation improves classification accuracy:
 • Radiometric Terrain Correction yielded 10% improvement in Overall Accuracy
 • Span Normalization yielded 22% improvement in Overall Accuracy

• Span Normalization approach is simple and effective, however not complete
 • Different scattering mechanisms (SB, DB, Volume) have different sensitivities to topography. Span normalization does not completely normalize.
• Polarimetric Orientation Angles should be investigated to see if accuracy can be further improved

• Data Fusion with optical will be explored

• Any attempt to quantify classification accuracy requires projection to ground range
 • PolSARpro and MapReady offer complementary capabilities

• Polarimetric operation in the GIS domain is now possible
Questions?