Use of Fully Polarimetric PALSAR Data for the Cartography of Tropical Vegetation

Context:

- Assessment for radar polarimetry for tropical vegetation classification
- Follow on study with AIRSAR data over a French Polynesian Island

Goal:

Evaluation of spaceborne PALSAR polarimetric data for tropical vegetation cartography by comparison to AIRSAR airborne data
Outline:

- Study site: Tubuai Island
- Classification method: SVM
- Results with AIRSAR data
- Results with ALOS/PALSAR data
STUDY SITE

French Polynesian Island: Tubuai

Quickbird Image (Google Earth)
French Polynesian Island: TUBUAI

KONA

TUBUAI
STUDY SITE

French Polynesian Island: Tubuai

Tropical vegetation

- **Landscape:**
 - Forests $\approx 60\%$
 - Low vegetation $\approx 30\%$
 - Agricultural fields
 - Residential areas
STUDY SITE: Tubuai Island

4 forest species

Purau Pinus Falcata Guava (invasive)

2 low vegetation classes

Fern lands Swamps

bare soils (agricultural fields + roads)
Classification Method: Support Vector Machine (SVM)

- **Supervised** classification method
- **Principle**: find a geometrical surface (*Hyperplane*) separating the training classes vectors.
- **Non linear case**:

 kernel method (*RBF*, polynomial,...) = *projection* of input data space to *higher space* where data are linearly separable

- **Noisy data**: *relaxation* (*Cost*) parameter

Example of non linear case:

☞ **SVM**: combination of *many* and *heterogeneous* indices
Fully Radar Polarimetric Data

Coherency Matrix $<T_3>$ ➔ 49 polarimetric indices

➔ SVM algorithm: 2 vectors

V_{T3}

\[
\begin{pmatrix}
T_{11} \\
T_{22} \\
T_{33} \\
\Re(T_{12}) \\
\Im(T_{12}) \\
\Re(T_{13}) \\
\Im(T_{13}) \\
\Re(T_{23}) \\
\Im(T_{23})
\end{pmatrix}
\]

Coherency matrix

Intensities and ratios

$T_{ij}(i, j = 1, 2, 3)$

$I_{hh}, I_{vv}, I_{ll}, I_{rr}$

$I_{hh}^2 + 2I_{hh} + I_{hh}^2$

$I_{hh} / I_{vv}, I_{hv} / I_{hh}, I_{hv} / I_{vv}$

$I_{ll} / I_{rr}, I_{ll} / I_{lr}, I_{rr} / I_{lr}$

Variation coefficient

$C_{V, hh}, C_{V, hv}, C_{V, vv}$

$C_{V, ll}, C_{V, lr}, C_{V, rr}$

Degree of coherency

$\rho_{hh-vv}, \rho_{hh-hv}, \rho_{vv-hv}$

$\rho_{ll-rr}, \rho_{ll-lr}, \rho_{rr-lr}$

Free space backsc. power

$\rho_{ll-lr}, \rho_{ll-lr}, \rho_{rr-lr}$

Degree of polarisation

$I_{min}, I_{max}/I_{min}$

Cloude/Pottier parameters

$dP_{min}, dP_{max}, \Delta dP$

Frequency

$H / A / \alpha$

Freeman parameters

P_s, P_d, P_v
AIRSAR acquisition over Tubuai Island

Sensor **AIRSAR** (JPL/NASA) August 2000

- **L** ($\lambda=23\text{cm}$) and **P** ($\lambda=67\text{cm}$) fully polarimetric (**POLSAR**):
- **C** band ($\lambda=5.7\text{cm}$): VV (**TOPSAR**)
- Incidence angle: 20-60°
- Spatial resolution: 13.5 x 5 m² – 4 looks
- Pixel size: 5 x 5 m²

Double bounce

- Volume
- Single bounce

L Band: Pauli Decomposition
AIRSAR Classification: Main Results

Coherency matrix elements (V_{T3}):

- SVM $>>$ Wishart classification \textit{(reflection symmetry not observed)}

 - $\text{MPA} = 87\%$
 - $\text{MPA} = 66\%$

Improvement with additional polarimetric indices

 - $\text{MPA} = 91\% (+4\%)$ with optimal set

Classification accuracy:

$\text{MPA} = \text{Mean Producer Accuracy}$
AIRSAR CLASSIFICATION RESULTS (P+L+C bands)

Satisfactory results according to the local concerned people
ALOS/PALSAR acquisition

- Acquisition date 9th April 2009
- Fully polarimetric (PLR)
- Incidence angle: 26°
- Spatial resolution: 10 x 70 m
- Pixel size: 3m x 20 m

500 x 250 pixels!

Double bounce
Volume
Single bounce

L Band: Pauli Decomposition
ROI derived from AIRSAR classification

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>Training samples</th>
<th>Control samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus</td>
<td>1000</td>
<td>11,254</td>
</tr>
<tr>
<td>Falcata</td>
<td>747</td>
<td>34,311</td>
</tr>
<tr>
<td>Purau</td>
<td>1000</td>
<td>29,075</td>
</tr>
<tr>
<td>Guava</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fern Land</td>
<td>787</td>
<td>11,897</td>
</tr>
<tr>
<td>Swamp</td>
<td>1000</td>
<td>11,811</td>
</tr>
<tr>
<td>No vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No vegetation</td>
<td>680</td>
<td>2107</td>
</tr>
</tbody>
</table>
PALSAR CLASSIFICATION RESULTS

$\text{SVM(T3): MPA} = 57\%$

$\Rightarrow \text{Reflexion symmetry still not observed}$

$\text{Wishart: MPA} = 53\%$

$\text{Addition of polarimetric indices: } 60\%$
PALSAR CLASSIFICATION RESULTS

SVM(T3): MPA = 57%

Wishart: MPA = 53%

➡️ Reflexion symmetry still not observed

Addition of polarimetric indices: 60%

Comparison with AIRSAR

AIRSAR (4 looks) 66 %

➡️ Spatial resolution

PALSAR (3 looks) 57 %
PALSAR CLASSIFICATION RESULTS

SVM(T3): MPA = 57%

Wishart: MPA = 53%

➤ Reflexion symmetry still not observed

Addition of polarimetric indices: 60%

Comparison with AIRSAR

AIRSAR (4 looks)	66 %
AIRSAR (boxcar 4x4)	
PALSAR (3 looks)	57 %

Similar spatial resolution
PALSAR CLASSIFICATION RESULTS

SVM(T3): MPA = 57%

Wishart: MPA = 53%

⇒ Reflexion symmetry still not observed

Addition of polarimetric indices: 60%

Comparison with AIRSAR

<table>
<thead>
<tr>
<th>AIRSAR (4 looks)</th>
<th>66 %</th>
<th>Radiometric resolution + texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRSAR (boxcar 4x4)</td>
<td>78 %</td>
<td></td>
</tr>
<tr>
<td>PALSAR (3 looks)</td>
<td>57 %</td>
<td></td>
</tr>
</tbody>
</table>

Similar spatial resolution
ROI derived from AIRSAR classifications

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>Training Samples</th>
<th>Control Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus</td>
<td>1,000</td>
<td>11,254</td>
</tr>
<tr>
<td>Falcata</td>
<td>747</td>
<td>34,311</td>
</tr>
<tr>
<td>Purau</td>
<td>1,000</td>
<td>29,075</td>
</tr>
<tr>
<td>Guava</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fern Land</td>
<td>787</td>
<td>11,897</td>
</tr>
<tr>
<td>Swamp</td>
<td>1,000</td>
<td>11,811</td>
</tr>
<tr>
<td>No vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>680</td>
<td>2107</td>
</tr>
</tbody>
</table>
With ROI adapted to PALSAR-PLR spatial resolution
With ROI adapted to PALSAR-PLR spatial resolution:

- MPA = 90%

PALSAR-PLR data are able to discriminate the different forest types for area compatible with its spatial resolution
CONCLUSION

A study case not *a priori* favorable to PALSAR data

PALSAR: same observations made with AIRSAR

- Discrepancies with Wishart distribution ➔ SVM > Wishart
- Good results with T3 elements
- MPA +3% with additional polarimetric indices

Results illustrate that PALSAR polarimetric mode is well suited for tropical vegetation cartography for areas compatible with its spatial resolution

Many thanks to JAXA for the PALSAR Acquisition