ALOS-Indonesia POL-InSAR Experiment (AIPEX): Progress Update

Mahmud Raimadoya, Bogor Agricultural University (IPB), Indonesia
Ludmila Zakharova, Institute of Radio-engineering and Electronics (IRE), RAS, Russia
Bambang Trisasosongko, Bogor Agricultural University (IPB), Indonesia
Nurwadjedi Sarbini, National Coordinating Agency for Survey and Mapping (Bakosurtanal), Indonesia
Acknowledgement

POLSARPRO
Overview

1. Introduction
2. Objective
3. Test Site
4. SAR-Calibration
5. POL-InSAR Analysis
6. Validation
7. Conclusions
Introduction

- Forest is an important issue for 2012 (Post-Kyoto Protocol)
- Required quantitative approach i.e. Tree Height (THE)
- Tree Height (THE) is important element for Biomass and REDD (Reducing Emissions from Deforestation and Degradation)
- THE + Allometry (Boreal/Temporal/Tropical) = Biomass
Introduction

- First attempt of THE measurement by space-borne SAR made locally in Indonesia = JAXA supported Second Research Announcement (RA2-402): “ALOS-Indonesia POL-InSAR Experiment (AIPEX)”
- Jointly implemented by Indonesia (IPB and Bakosurtanal) and Russian (IRE/RAS) team
- Envisat-Indonesia Radar Biomass Experiment (EIRBEX), ESA AOE-869, 2002
- Airborne SAR: Indonesia Radar Experiment II (INDREX-II), Nov 2004, ESA Campaign (POL-InSAR Tropical Forest)
- AIPEX test-site not the same with EIRBEX/INDREX-II test-sites
Objective

- To study the application of POL-InSAR analysis of ALOS/PSR FP image (PLR-215) for tree height measurement of tropical natural forest in Indonesia:
 1. What is L-Band repeat pass interferometry (tree) height accuracy?
 2. What is the performance of POL-InSAR tree height for 21 classes of the existing Indonesian operational forest categories?
Test Site
TEST SITE
Test Site
SAR-Calibration

- SAR-CAL process was completed and reported in 2nd ALOS Joint PI Symposium in Rhodes Island, GREECE, 2008
- Calibration test of Faraday rotation angle, cross talk and range distribution of sigma nought for ALOS/PSR PLR-215 in Indonesia was OK for vegetation study
- POL-InSAR analysis, therefore, could be implemented for THE measurement
POL-InSAR Analysis

• THE Measurement Options:

- LIDAR (Airborne)
- DB-InSAR = DualBand-InSAR (Airborne)
- POL-InSAR = Polarimetric-InSAR (Spaceborne)
The GeoSAR System

- GeoSAR is mounted on a Gulfstream GII jet aircraft.
- Flies around 12000m altitude, with a top speed of Mach 0.85 and a range of over 1600 nautical miles.
- X-band between 9.63GHz and 9.79GHz, wavelength at centre frequency of 3.1cm.
- P-band between 0.27GHz and 0.43GHz, wavelength at centre frequency of 0.86m.
- High bandwidth of 0.16GHz (at both bands): best slant-range resolution of 0.94m (unweighted aperture).
- Single-pass interferometry with horizontal baselines of 2.6m at X-band and 22m at P-band.
- Used for wide-area mapping: collects data for 288sqkm per minute.

<table>
<thead>
<tr>
<th></th>
<th>X-band</th>
<th>P-band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosaic DEM height accuracy</td>
<td>1-3m (Absolute)</td>
<td>2-5m (Absolute)</td>
</tr>
<tr>
<td>Mosaic planimetric accuracy (GPS/Lidar Control)</td>
<td>2.5m (Absolute)</td>
<td>4m (Absolute @ 10km Altitude)</td>
</tr>
<tr>
<td>Ground swath width</td>
<td>10-12km, Each Side</td>
<td>10-12km, Each Side</td>
</tr>
<tr>
<td>Incidence angles</td>
<td>25-60 deg.</td>
<td>25-60 deg.</td>
</tr>
<tr>
<td>Polarization</td>
<td>VV</td>
<td>HH (interferometric) + HV</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>160MHz</td>
<td>160MHz</td>
</tr>
<tr>
<td>Wavelength at centre frequency</td>
<td>0.03m</td>
<td>0.85m</td>
</tr>
<tr>
<td>Baseline length</td>
<td>2.6m</td>
<td>22m</td>
</tr>
</tbody>
</table>

(www.fugroearthdata.com)
How GeoSAR Works

Collection Height:
31,000 to 39,000 ft MSL

X-Band (3 cm wavelength)
P-Band (85 cm wavelength)
Profiling LIDAR

(www.fugroearthdata.com)
GeoSAR X-band InSAR

• X-band: frequency 9.7GHz, wavelength 3.1cm.

• The short wavelength radiation is strongly (but not completely) attenuated by woody material and foliage.

• The interferometric phase centre lies below the tree crown surface in the upper canopy.

• The interferogram yields a canopy surface map (DSM).

(www.fugroearthdata.com)
GeoSAR P-band InSAR

- P-band: frequency 0.35GHz, wavelength 83cm.

- The long wavelength radiation penetrates the canopy.

- Scattering is dominated by the ground-volume return – with phase centre close to the ground.

- The interferogram yields a near-ground height map (DTM).

(www.fugroearthdata.com)
GeoSAR and DBInSAR

- Dual-frequency, single-pass SAR interferometry (DBInSAR).

- The difference in interferometric phase heights yields a surrogate vegetation height, h_{XP}.

- This height is strongly correlated with the true vegetation height (Sexton et al, 2009).

- Vegetation height statistics can be used to derive biomass.

- So GeoSAR multi-channel data could be used to estimate tropical forest biomass – without using PoInSAR …

(www.fugroearthdata.com)
POL-InSAR Analysis

- THE derived by POL-InSAR Analysis
- SLC image pair (ALPSRP060040030-P1.1__A of 2007/03/11 and ALPSRP066750030-P1.1__A of 2007/04/26) in PLR-215 mode
- **ALOS Systematic Observation Strategy**: PLR-215 is acquired only for one time per two years (2007/Cycles: 10-11 and 2009/Cycles: 26-27)
- Gap between adjacent track in equator area due to PLR-215 acquisition geometry
Ground Range – Slant Range
SLC Image Pair (PLR): Repeat Pass

20070311

20070426
Baseline Estimation

POLinSAR Baseline Estimation

- **Input Master Directory**: D:/00PLR11/A-00/M20070311
- **Input Slave Directory**: D:/00PLR11/A-00/S20070426
- **Output Slave Directory**: D:/00PLR11/A-00/S20070426
- **Init Row**: 1, **End Row**: 18432, **Init Col**: 1, **End Col**: 1248

Baseline Estimation

- **ALOS (JAXA)**
- **ALOS (ERSDAC)**
- **RADARSAT-2**
- **TerraSAR-X**

Averaged Estimated Baseline Values

- **Parallel**: -656.9
- **Perpendicular**: -1158
- **Horizontal**: -1318
- **Vertical**: 186.25

Auxiliary Parameter Estimation

- **Flat Earth**
- **kz**
- **Incidence Angle (deg)**

Output Format

- **real (deg)**
- **real (rad)**
- **complex (cos, sin)**

Raimadoya et. al, Page 23
Incidence Angle (L) – Kz (R)
Flat Earth
Height Inversion

Height Estimation from Inversion Procedures

- **Input Master - Slave Directory**

 D:/00PLR11/A-00/M20070311_SUB_S20070426_SUB_COR_FER

- **Output Master - Slave Directory**

 D:/00PLR11/A-00/M20070311_SUB_S20070426_SUB_COR_FER

<table>
<thead>
<tr>
<th>Init Row</th>
<th>End Row</th>
<th>Init Col</th>
<th>End Col</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6001</td>
<td>1</td>
<td>1248</td>
</tr>
</tbody>
</table>

- **Update List**

- **Polarimetric Phase Centre Height Estimation**

 Polarimetric Channel: HV

- **DEM Differencing Algorithm**

- **Coherence Amplitude Inversion Procedure**

- **Ground Phase Estimation and RVQG Inversion Procedure**

 - Median Window Size: 11
 - Weighting Coherence Fraction Factor: 0.5

- **Top Phase Centre**: HV
- **Ground Phase Centre**: HH - WV

- **2D Kz File**

 D:/00PLR11/A-00/M20070426_SUB/kz.bin

- **Run**

- **Hist**

- **Exit**
Comparison: THE01-THE02
Comparison: THE03-THE04

![Graph 1](image1)

Max = 25.348576
Min = 0.006558

![Graph 2](image2)

Max = 27.215260
Min = 0.014611
Validation

• No validation was made yet
• Requires cooperation with other interested party in Indonesia (with good record of forest parameter) to apply POL-InSAR in their target site(s): 2010 validation exercise
• The target site(s) must be in PLR-215 repeat pass acquisition archive (2007 or 2009)
• Improvement of POLSARPRO is required prior to validation, to display the image and coordinate in UTM or Lat-Long
Conclusions

• The result of repeat pass (46-days) POL-InSAR analysis of ALOS/PSR PLR-215 in AIPEX test site (Indonesia) was successfully completed by local capacity.

• Further cooperation with other interested party(s) in Indonesia is required to validate the method in different natural tropical forest condition (21 classes).

• Improvement of POLSARPRO is required, prior to validation process, to allow the measurement in PLR-215 image could be done in “ground-range” SLC.

• Other option is MapReady could be used to import POL-InSAR final result from POLSARPRO, transform it from slant-range to ground-range and export it back to POLSARPRO.
MAHALO! THANK YOU