Toward Distribution of Aboveground Forest Carbon Stock from ALOS PALSAR and Data Fusion

Sassan Saatchi
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

Edward Mitchard (Univ. of Edinburgh)
Alexandra Morel (Oxford University)
Yadvinder Malhi (Oxford University)

ALOS PI Meeting
Hawaii, November, 2009
OUTLINE

• Results from field campaigns
• Limitations of ALOS PALSAR
• Data Fusion Approach
• Summary and Conclusion
Field Data

Variable plot sizes: 0.1-1.0 ha

- Mbam Djarem National Park (NDNP), Cameroon: Forest-savanna ecotone contiguous with Congo Basin: (24 plots)

- Budongo Forest Reserve (BFR), Uganda
 Remnant patches of tropical forest, farmland, savanna: (129 plots)

- Nissa National Reserve (NNR), Mozambique:
 Miombo Woodland: (42 plots)

- Nhambita Community Carbon Project (NCCP), Mozambique:
 Miombo Woodlands: (58 plots)
a) HH response to AGB

R² = 0.55
p < 0.0001
n = 253

Cameroon - MDNP
Mozambique - NCCP
Mozambique - NNR
Uganda - BFR

b) HV response to AGB

R² = 0.73
p < 0.0001
n = 253
AGB < 150 Mg/ha
Estimation Accuracy: ~ ±20%

\[
\sigma^0_{HV} = -22 + 2.73 \ln(AGB) - 0.156(\ln(AGB))^2
\]

\[
AGB = \exp\left[\frac{-2.73 + \sqrt{7.45 - (0.623(22 + \sigma^0_{HV}))}}{-0.311}\right]
\]
Assessment of Changes of Biomass from Disturbance and Recovery

Mbam Djarem National Park (NDNP), Cameroon: Forest-savanna ecotone contiguous with Congo Basin: (24 plots)
$r^2 = 0.76$
$p < 0.0001$

$\text{Basal area (m}^2\text{ ha}^{-1}\r)\$

-14

-20

$\text{ALOS HV } \sigma_0^\circ (\text{dB})$

$\text{Basal area (m}^2\text{ ha}^{-1}\r)\$

-6

-11

$\text{ALOS HH } \sigma_0^\circ (\text{dB})$

$\text{Basal area (m}^2\text{ ha}^{-1}\r)\$

-6

-11

$\text{ALOS HH } \sigma_0^\circ (\text{dB})$

$\text{Basal area (m}^2\text{ ha}^{-1}\r)\$

-6

-11

$\text{ALOS HV } \sigma_0^\circ (\text{dB})$

$\text{Average height (m)}$

-14

-20

$\text{ALOS HV } \sigma_0^\circ (\text{dB})$

$\text{Average height (m)}$

-6

-11

$\text{ALOS HH } \sigma_0^\circ (\text{dB})$

$\text{Average height (m)}$

-6

-11

$\text{ALOS HH } \sigma_0^\circ (\text{dB})$

$\text{Average height (m)}$

-6

-11

$\text{ALOS HH } \sigma_0^\circ (\text{dB})$
a) Location of cross-calibration points overlaid on ALOS biomass map

![Biomass map]

b) JERS HH backscatter against ALOS HV-derived AGB

![Graph with regression line and statistics]

\[r^2 = 0.95 \quad p < 0.0001 \]

<table>
<thead>
<tr>
<th>Biomass Range</th>
<th>Minimum spatial scale at which change can be detected annually</th>
<th>Minimum spatial scale at which change can be detected decadally</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 Mg ha(^{-1})</td>
<td>±1 Mg ha(^{-1}) yr(^{-1})</td>
<td>±5 Mg ha(^{-1}) yr(^{-1})</td>
</tr>
<tr>
<td>100-200 Mg ha(^{-1})</td>
<td>2.5 km</td>
<td>500 m</td>
</tr>
<tr>
<td>> 200 Mg ha(^{-1})</td>
<td>4 km</td>
<td>800 m</td>
</tr>
</tbody>
</table>
Assessment of Biomass Change Measurement from Disturbance and Recovery
Field Data

• La Selva: 28 1-ha plots

• BCI: 50-ha plot & 52 single 1-ha plots

• Mbam Djarem Cameroon: 18 1-ha plots

• Pearl River, Katrina: 38 0.1 1-ha
The document presents a model for estimating Aboveground Biomass (AGB) using L-band HV polarization of the ALOS PALSAR sensor. The model is given by:

\[\text{LHV (dB)} = -22.5 + 3.0 \log(\text{AGB}) \]

The scatter plots show the relationship between L-band HV backscatter and aboveground biomass for different locations:

- **Cameroon** with an adjusted coefficient of determination \(r^2 = 0.84 \) and \(p < 0.0001 \).
- **La Selva** with \(r^2 = 0.79 \) and \(p < 0.0001 \).
- **Pearl River, Katrina** with \(\text{HV (dB)} = -21.79 + 2.26 \log(\text{AGB}) \) and \(r^2 = 0.79 \).
- **BCI < 250 Mg/ha** with \(y = -20.782 + 2.241 \log(x) \) and \(r^2 = 0.85418 \).
Radar Backscatter Derived Biomass
Tropical Forest
Comparison of AIRSAR & ALOS PALSAR Data

La Selva Biological Station

Incidence Angle: 45-55 degrees

Ground Radar Measurement of Attenuation

Lang et al., 2008

AIRSAR

\[R^2 = 0.42 \]
\[P < 0.001 \]

ALOS

\[R^2 = 0.79 \]
\[P < 0.0001 \]
Impact of Geolocation Error on Biomass Estimation

Impact of 1 pixel (25 m) geolocation error: The overall relationship stays the same but the backscatter variability increases.
Impact of Resolution on Biomass Retrieval

Polarimetric Measurements
Estimation using HH, HV, VV

For 0.5 ha:
- \(R^2 = 0.58 \)
- RMSE = 39 Mg/ha
- Pixel Size: 0.5 ha

For 1.0 ha:
- \(R^2 = 0.7 \)
- RMSE = 28 Mg/ha
- Pixel Size: 100 m
Assessment of Carbon Stock and Emission
Borneo
ICESAT GLAS Lidar Measurements
Forest Height

Waveform recording lidar

\[AGBM = 20.7 + 0.098 \times H^2 \]

\[R^2 = 0.73 \]
Radar & Lidar Fusion Approach to Map Biomass

1. A probabilistic framework
2. Develop incomplete empirical probability distribution based on the occurrences
3. Approximate with a probability distribution of maximum entropy
4. Use environmental variables as constraints
5. A rule classifier to produce forest biomass map

Maximum Entropy Estimation Model

\[H(\pi) = \sum_{x \in X} \pi(x) \ln \pi(x) \]
Distribution of Aboveground Forest Biomass in Borneo

AGLB Mg/ha

- Bare
- Savanna
- 0-25
- 25-50
- 50-75
- 75-100
- 100-150
- 150-200
- 200-250
- 250-300
- 300-350
- 350-400
- > 400
Assessment of Biomass Class Accuracy

Lidar Estimated Biomass (Mg/ha)

Estimated Biomass Class

AGB Class

AGB Mg/ha

- Bare
- Savanna

0-25
25-50
50-75
75-100
100-150
150-200
200-250
250-300
300-350
350-400
> 400
ALOS Imagery
HH, HV, HH-HV
Monitoring Deforestation and Forest Degradation

2007

2007
SUMMARY

• L-band PALSAR can measure AGB<\((100-150)\) Mg/ha with 20% Accuracy and may classify high biomass forests. Seasonality of moisture and phenology, scale of estimation, geolocation errors will impact the accuracy.

• L-band PALSAR can measure forest disturbance and recovery at 100 m spatial resolution. Seasonality of moisture and phenology will impact the estimation.

• Fusion of radar and lidar can provide estimates of above-ground biomass at resolutions > 100 m and with variable accuracy over high biomass forests.