Results of **UAVSAR** Airborne SAR Repeat-Pass Multi-Aperture Interferometry

Bryan Riel, Ron Muellerschoen
Jet Propulsion Laboratory, California Institute of Technology

© 2011 California Institute of Technology.

The work reported here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

CEOS SAR Cal/Val Workshop
Outline

- References of Multi Aperture Interferometry
- Repeat Pass Interferometry Overview
- Baseline Estimation
 - Range Offsets
 - Azimuth Offsets
- Multi Aperture Technique
- Finite Impulse Response Filter Implementation
- Controlled Example
- UAVSAR Results
- Summary

CEOS SAR Cal/Val Workshop
References

Measuring deformation using radar interferometry uses two passes separated by time intervals ranging from minutes to years to access motion along the radar line-of-sight between observations.

State-of-the-art data fusion of precise GPS positions and aircraft INU data still leaves residual phase errors in the SAR interferogram.
Baseline Estimation – Range Estimates

- Range and azimuth displacements between the images of the two passes can be used to obtain baseline correction.

- Two methods of displacement construction will be discussed
 - ampcor – Amplitude Correlation
 - MAI – Multi-Aperture Interferometry

- Components of the baseline offsets in the cross-track (B_C) and vertical (B_H) direction can be obtained by minimizing the performance functional J_R

$$J_R(B_C(k), B_H(k)) = \sum_{i \in k} \left| \frac{\lambda}{4\pi} \phi_i - B_C(k)L_C - B_H(k)L_H \right|^2$$

where L_C and L_H are the components of the look vector at instance i
Baseline Estimation – Azimuth Estimates

- Range and azimuth displacements between the images of the two passes can be used to obtain baseline convergence angles.
 - Baseline convergence angles $\tan \gamma$ and $\tan \delta$ can be obtained by minimizing the performance function J_A

$$J_A \left(\frac{dB_C(k)}{dS}, \frac{dB_H(k)}{dS} \right) = \sum_{i \in k} \left| \sin \alpha - \frac{\langle \overline{T - P_1 - B(k), M(k) \cdot \hat{n}} \rangle}{|\overline{T - P_1 - B(k)}|} \right|^2$$

where α is the electronic steering angle, \hat{n} is the imaging plane normal, T and P_1 are the target and platform locations and

$$\overline{B(k)} = \left(\frac{\text{azimuth spacing}}{4\pi}, \phi_a(i), B_C(k), B_H(k) \right)$$

$$M(k) = \begin{pmatrix} 1 & -\gamma(k) & \delta(k) \\ \gamma(k) & 1 & 0 \\ -\delta(k) & 0 & 1 \end{pmatrix}$$

NB: scaling by (azimuth spacing / 4 / π) to be explained

Baseline Estimation Process

- Integrating the baseline convergence angles $\tan \gamma$ and $\tan \delta$ produces estimates of the baseline offsets.
 - Estimates of cross-track baseline offsets (B_C) and vertical baseline offsets (B_H) as determined from J_R are used as the constants of integration.
Multi-aperture Interferometry Overview

- Range and azimuth displacements can be generated from cross-correlation of amplitude images.
 - Sub-pixel precision can be obtained by oversampling the data during cross-correlation.
 - Computation is performed on small patches of the images resulting in offset measurements in both Range and Azimuth directions.
 - Range estimates and Azimuth estimates are correlated.
 - Method depends on speckle correlation--not image correlation.
 - “ampcor”

- Range and azimuth displacements can also be generated from phase differences in the images.
 - Generate forward and backward SLC’s which correspond to positive and negative Doppler frequencies.
 - Computation is performed on large patches of data resulting in offset displacements in Azimuth direction.
 - Additionally requires phase unwrapping.
 - Range offsets derived directly from the interferogram of the scene and therefore uncorrelated with the azimuth estimates.
 - But also requires phase unwrapping.
 - Proves to work well with scenes of low contrast such as ice.
 - Multi-Aperture Interferometry or MAI
MAI Technique – Geometry

Sub-aperture processing produces forward and backward looking interferograms:

\[
\Phi_{\text{forward}} = -\frac{4\pi}{\lambda} \Delta S \sin(\theta_{sq} + \beta)
\]

\[
\Phi_{\text{backward}} = -\frac{4\pi}{\lambda} \Delta S \sin(\theta_{sq} - \beta)
\]

\[
\Phi_{\text{MAI}} = \Phi_{\text{forward}} - \Phi_{\text{backward}} = -\frac{8\pi}{\lambda} \Delta S \cos\theta_{sq} \sin\beta
\]

where \(\beta \) is the fraction of the full beamwidth \(\alpha \) and \(\Delta S \) is a displacement in the along track.

For \(N \) subapertures:

\[
\beta = \frac{\alpha}{2N} \quad \text{and} \quad \alpha = \frac{\lambda}{L_a} \quad \text{and} \quad L_a \quad \text{is the effective antenna length}
\]

\[
\therefore \quad \Delta S = -\Phi_{\text{MAI}} \frac{2NL_a}{8\pi} \quad \text{for small} \quad \theta_{sq} \quad \text{and small} \quad \beta
\]

For a azimuth resolution of 3 meters, \(L_a \) is 6 meters, and with 2 sub-apertures:

\[
\Delta S = -\Phi_{\text{MAI}} \ast (3 / \pi) \text{ meters}
\]

\[
\phi_a(i) = (4\pi \Delta S) / (\text{azimuth spacing})
\]

MAI Technique – Two Possible Approaches

- 4 additional images are required
 - 1.) forward looking image of pass 1, call it S_1^f
 - 2.) backward looking image of pass 1, call it S_1^b
 - 3.) forward looking image of pass 2, call it S_2^f
 - 4.) backward looking image of pass 2, call it S_2^b

\[\Phi_{MAI} = \arg\left\{ (S_1^f S_2^*) (S_1^b S_2^*)^* \right\} \]

- Instead, filter the focused images in the azimuth direction
 - Construct a FIR filter with pass band equal to the width of a single sub-aperture (α/N)
 - Shift in the frequency domain to pass either the positive or negative frequencies associated with the Doppler centroid
 - NB: Each filter will be range dependent due to look angle variation over the range swath
MAI Technique – convolve SLC with FIR filter

- In time domain, construct forward looking filter h^f and backward looking filter h^b

\[
h^f(j; r) = C_j e^{4\pi j(0.25)} e^{4\pi j f_0}
\]

\[
h^b(j; r) = C_j e^{4\pi j(-0.25)} e^{4\pi j f_0}
\]

where \(f_0(r) = \frac{2(\text{azimuth spacing})L_s(r)}{\lambda}\)

and \(L_s(r)\) is the component of the look vector in the along track direction
Controlled Example

- Use same data in repeat pass mode – but perturb platform motion.
 use real-time vs. post-processed GPS data

2 π wrap interferogram

CEOS SAR Cal/Val Workshop

Amplitude image

32 km
Baseline Estimates from Minimizing J_R and J_A
Interferograms from Baseline Estimates...

- Using ampcore displacements
- Using MAI displacements
- Using truth displacements

Increasing range

π/2 wrap interferogram
Range and Azimuth Displacements
Examples—processing sample RPI cases with MAI

SanAnd_26501_10027-001_10028-000_0001d_s01_L090HH_02
(10027: 2 deg avg yaw, 10028: 4 deg avg yaw)

ampcor

Near range fringing appears to be reduced.
Phase variations closer to mean 0.
Examples—processing sample RPI cases with MAI

Laurnt_18801_09054-005_09056-005_0002d_s01_L090HH_01
(09054: 7 deg avg yaw, 09056: 4 deg avg yaw)

Smaller Residual Phase
Examples—processing sample RPI cases with MAI

harvrd_18505_09060-005_09065-004_0004d_s01_L090HH_01
(09060: avg -1deg yaw, 09065: avg 9deg high yaw)

ampcor

MAI
Near range fringing reduced
Examples—processing sample RPI cases with MAI

harvrd_18501_09063-002_09065-006_0001d_s01_L090HH_01
(09063: -0.6 avg yaw, 09065: -0.5 avg yaw)

ampcor

MAI
Flatter interferogram
Summary

• Demonstrated that Multi-Aperture Interferometry can produce azimuth displacements comparable to amplitude correlation displacements.
 – Method has not been adopted for production of repeat-pass interferometry at JPL.

• Possible advantage of MAI is that the range displacements are uncorrelated from the azimuth estimates.
 – Range offsets come directly from unwrapped interferogram.

• Additional sub-banding techniques are also being investigated for improved residual motion recovery.